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Abstract 

 

In this review of the Aharonov-Bohm effect, we look at the path integral method to solving 

the dynamics of the system. In particular, we examine the general form of the propagator 

and its relation to the multiply connectedness of the space. We determine the full propagator 

by summing over the partial propagators in each homotopy class. This result is compared 

with the solution to the Schrodinger equation as presented by Aharonov and Bohm 

themselves. We also evaluate the wave function for both cases and find that the predictions 

for the interference pattern match. The importance of the non-self-adjointness of the 

Hamiltonian is also made clear and an interpretation of the magnetic flux as an extension to 

the Hamiltonian is presented. 
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1 Introduction 
1.1 The Aharonov-Bohm Effect 

 

The laws that describe electromagnetism are usually expressed in terms of the electric field E and magnetic field B, 

but the Maxwell equations can be simplified by introducing the electric and magnetic potential. These potentials 

help to reduce the number of equations that need to be solved in a given problem; however, they were not at first 

considered anything more than a mathematical trick. In 1959, Aharonov and Bohm suggested that, in quantum 

mechanics, the electric scalar potential Φ and the magnetic vector potential A could have an influence on a charged 

particle and, therefore, have a certain physical reality to them (Aharonov and Bohm, Significance of 

Electromagnetic Potentials in the Quantum Theory). In quantum mechanics, the canonical formalism is needed to 

fully describe a system and the potentials can enter the propagator of a particle through the Hamiltonian or the 

Lagrangian, having a direct influence on a wave function's evolution. The Aharonov-Bohm effect has since been 

found experimentally, but the correct interpretation of the effect remains controversial (Chambers; Boyer). 

In the magnetic version of the AB-effect, the authors describe the setup as follows. There is an infinitely long 

solenoid which produces a magnetic field. Because it is infinitely long, there are no field lines outside of the 

solenoid. There is, however, a magnetic vector potential everywhere in the space. More details on the setup can be 

found in the appendix. From a source, electrons are sent to a detector on the other side of the solenoid. Some 

electrons will pass the solenoid from the left and others from the right. Even though the electrons never enter a field 

because they are prevented from entering the solenoid by a potential barrier, and therefore never experience any 

force, there will be a clear effect on the phase of the electron's wave function. To see how this comes about, consider 

the Lagrangian for an electromagnetic setup. 

 L(r2���⃑ , t2, r1���⃑ , t1) =
1
2

mṙ⃑2 +
q
c

ṙ⃑ ∙ A��⃑ − qΦ (1.01) 

The magnetic vector potential, therefore, enters the propagator. 

 exp�
i
ħ

S(r2���⃑ , t2, r1���⃑ , t1)� = exp�
i
ħ

x +
iq
ħc
� dt ṙ⃑ ∙ A��⃑
t2

t1
� = exp�

i
ħ

x +
iq
ħc
� dr⃑ A��⃑
r2����⃑

r1����⃑
� (1.02) 

 where x = � dt 
1
2

mṙ⃑2 − qΦ
t2

t1
 (1.03) 

On the detector, the paths going left and right of the solenoid are combined. The difference in phase, when the two 

electrons interfere, is the usual phase difference plus a term contributed by the vector potential A. Using Stokes's 

theorem, we can show that the size of this extra term, α, is related to the strength of the magnetic flux, F. 

 
q
ħc
�� dra���⃑  A��⃑

r2����⃑

r1����⃑
− � drb���⃑  A��⃑

r2����⃑

r1����⃑
� =

q
ħc
� dl⃑ A��⃑
R

=
q
ħc
� ds ∇��⃑ × A��⃑
S

=
q
ħc
� ds B��⃑
S

=
q
ħc

F = α (1.04) 

Therefore, the strength of the magnetic field has a direct influence on a part of the system where there is no 

magnetic field. This also shows that when the magnetic flux running through the solenoid, multiplied by q/(ħc), is a 

multiple of 2π, the AB-effect is not noticeable and the original interference pattern can be observed. 
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1.2 The Berry Phase 

 

The AB-effect has been generalised by Berry as a particular type of geometric phase. A geometric phase can arise 

when a quantum system is transported around some circuit by varying parameters in the Hamiltonian. From the 

adiabatic theorem, it follows that the system will remain in the same state when this transport is done slowly. When 

the Hamiltonian is finally returned to its original form, the system will be in the same state apart from an additional 

phase factor (Berry, Quantal Phase Factors accompanying Adiabatic Changes). The cause for this anholonomy is the 

fact that the circuit lies on a curved surface in parameter space. The phase factor does not depend on the energy of 

the system or on the time it takes to circle the loop; it is only affected by the geometry of the space (Berry, The 

Geometric Phase). In the case of the AB-effect, the geometry is determined by the magnetic flux and, like we just 

did above, the phase can be calculated by integrating over any surface that catches all the flux through the circuit. 

 

1.3 Multivaluedness and Self-Adjointness 
 

The AB-setup which we are considering does not involve a simply connected space due to the presence of the 

magnetic flux. The space is multiply connected with a puncture at the position of the solenoid. In such a space, the 

Hamiltonian would normally lead to a multivalued wave function. As solutions to the Schrodinger equation, such 

functions are, in general, not permissible in quantum mechanics and it is easy to reason why they would not be 

appropriate in this case either. In principle, the magnetic flux could always be decreased adiabatically to zero, 

turning the space back to a simply connected region. If multivalued wave functions were allowed for the AB-setup, 

these functions would also need to be allowed for a free particle. Quantum mechanics prohibits the use of 

multivalued wave functions in ordinary space and, therefore, its use is also prohibited in the AB-setup (Aharonov 

and Bohm, Further Considerations on Electromagnetic Potentials in the Quantum Theory). The fact that the particle 

was in a multiply connected region at some stage in its history, before the flux was turned off adiabatically, is of no 

importance as systems in quantum mechanics are independent of the past history. 

Besides the fact that the space is multiply connected, there is a requirement that the particle cannot penetrate the 

solenoid. This is simply a boundary condition which states that the wave function is zero at the origin. The problems 

with the wave function which we mentioned stem from the fact that the Hamiltonian in this case is not self-adjoint, 

which means that it does not adequately describe the dynamics of the system (Thaller). According to Stone's 

theorem, the self-adjointness of the Hamiltonian operator is equivalent to the existence of a quantum-mechanical 

unitary time evolution; it is the generator of is a unique one-parameter unitary group (Le Bellac). The multiply 

connectedness of the setup results in an ambiguous time evolution. An extra piece of information is needed to be 

able to describe the system fully; this information lies with the boundary conditions (Schulman, Approximate 

Topologies). We will end up with a one-parameter family of extensions of the Hamiltonian. Basically, the original 

definition of the Hamiltonian was not appropriate for this system and a new operator needs to be found which we 

can then define to be the Hamiltonian (Garbaczewski and Karwowski; Carlen and Loffredo). This is done in the 

appendix and is used in solving the Schrodinger equation. 
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2 The Schrodinger Equation 
2.1 The Exact Solution 
 

In the original paper, Aharonov and Bohm gave a solution for the wave function of the magnetic version (Aharonov 

and Bohm, Significance of Electromagnetic Potentials in the Quantum Theory). By means of rewriting the 

Schrodinger equation, which has been redone in the appendix, the authors got the following expression. 

 �
∂2

∂ρ2
+

1
ρ
∂
∂ρ

+
1
ρ2
�
∂
∂φ

+ iα�
2

+ k2�ψ = 0 (2.01) 

It follows that the general solution includes Bessel functions and will have the form: 

 ψ = �  exp(imφ) �amJm+α(kρ) + bmJ−m−α(kρ)�
∞

m=−∞

 (2.02) 

The coefficients a(m) and b(m), here, need to be chosen so that the wave function satisfies the boundary conditions 

of the AB-setup. The expression can then be simplified to find a comprehensive solution for the wave function. A 

discussion of this process is given in the original paper where the authors verify that these coefficients must be: 

 am = (−i)|m+α| (2.03) 

 bm = 0 (2.04) 

The final solution for the wave function, with k = 1, includes two terms, where the first represents the incident wave 

and the second term corresponds to the scattering wave. 

 ψ = exp(−iαφ − iρ cos(φ)) +
exp(iρ)

(2πiρ)
1
2

sin(πα)
exp �−iφ2�

cos �φ2�
 (2.05) 

 

2.2 Non-Self-Adjoint Hamiltonian 
 

To stress the point of the non-self-adjointness of the Hamiltonian, we will make an analogy with the system of the 

particle in a box. When one naively uses the original definition of the Hamiltonian without taking into account the 

influence of the boundary conditions on the dynamics, some problems may arise (Bonneau, Faraut and Valent). For 

a particle in a box of width L, the Hamiltonian and its domain can be defined as: 

 H = −
ħ2

2m
∇��⃑ 2 (2.06) 

 for D(H) = �ψ, Hψ ∊ L2 �−
L
2

,
L
2
� , ψ �±

L
2
� = 0� (2.07) 

We may consider an arbitrary function which satisfies the boundary conditions and is zero outside the box. 

 ψ = −�
30
L5
�
1
2
�x2 − �

L
2
�
2

� (2.08) 
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 Hψ = ψ� =
ħ2

m
�

30
L5
�
1
2
 (2.09) 

The action of the Hamiltonian on the wave function returns a constant. In this case, it can be shown that the use of 

the self-adjointness of the operator produces a paradox. 

 〈E2〉 = ⟨Hψ|Hψ⟩ = ⟨ψ�|ψ�⟩ =
30ħ4

m2L4
 (2.10) 

 〈E2〉 = ⟨ψ|H2ψ⟩ = ⟨ψ|Hψ�⟩ = 0 (2.11) 

This contradiction arises because the definition of the Hamiltonian is not appropriate; the operator is not self-adjoint. 

The system for the AB-effect has a similar problem due to the multiply connectedness of the space. The boundary 

condition that the wave function must vanish within the solenoid causes an ambiguity in the dynamics of the system. 

The Hamiltonian that does define the dynamics well has, in the appendix, been shown to be: 

 Hα =
ħ2

2m
�−

∂2

∂ρ2
−

1
ρ
∂
∂ρ

+
1
ρ2
�i
∂
∂φ

− α�
2

� (2.12) 

 

3 The Path Integral 
3.1 The Covering Space 
 

In order to deal with the multivaluedness and with the non-self-adjointness of the Hamiltonian, we can move from 

the base space to a covering space (Schulman, Approximate Topologies). In this simply connected space, a position 

with angle φ = π ≠ 3π  and the Hamiltonian is once again self-adjoint. When the solenoid is turned on, the covering 

space can be thought of as the Riemann surface for the logarithm as seen in figure 1. 

 
In the covering space, a path going to the left of the solenoid is differentiated from one going to the right, i.e. it hits 

the detector at a different location with a different angle φ. The accumulated phase factor for these paths, therefore, 

is also different. However, when the distance between each level of the Riemann surface is exactly 2π, no difference 

between paths can be determined. This corresponds to the case when the phase factor α, proportional to the magnetic 

flux running through the solenoid, is a multiple of 2π and the AB-effect is not noticeable, as explained above. The 

Riemann surface can be stretched and flattened out to get a simple simply connected two dimensional half-space 
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with radial direction ρ and angle φ running from -∞ to ∞. In the base space, it is easy to identify the number of 

windings n around the solenoid the path makes. This number can be determined by looking at the amount of times a 

particle crosses the line L from the bottom up, subtracting the numbers of times it crosses this line from the top 

down. In the covering space, a path with winding number n originates from the source S located at position ρ = ρ(1), 

φ = φ(1) = 0 and can travel to the detector D at position ρ = ρ(2), φ = φ(2) + 2πn. 

 

3.2 The General Form 
 

In a multiply connected space, there are many distinct homotopy classes of paths which, by definition, cannot be 

continuously deformed into each other. Every homotopy class itself is located on a simply connected region of the 

base space of which the dynamics are determined by the propagator for that particular homotopy class. The full 

propagator for the multiply connected space is, then, the sum over all partial propagators for the different classes 

(Schulman, A Path Integral for Spin). For the AB-setup, the space is multiply connected due to the presence of the 

solenoid; homotopy classes are classified by the number of windings around the solenoid. There is one additional 

degree of freedom that such a system presents which stems from the fact that there is no prior reason for every class 

to have the same weight. It turns out that this weight is simply a phase factor dependent on the homotopy class 

(Dowker; Laidlaw and Morette-DeWitt). The general form of the propagator, therefore, is: 

 K(r2���⃑ , t2, r1���⃑ , t1) = � exp(inα) Kn(r2���⃑ , t2, r1���⃑ , t1)
∞

n=−∞

 (3.01) 

To see why it is necessary for there to be such an extra phase factor, let us look at what would happen when we take 

the end point r(2) and move it all the way around the puncture in the space in a anticlockwise manner and return to 

the same position we started from. For the full propagator, nothing changed physically and so the difference can 

only be a phase factor which we may call -α, where the minus is added for consistency later on. On the other hand, 

each individual partial propagator is equivalent to the original partial propagator with n + 1. 

 exp(−iα) K(r2���⃑ , t2, r1���⃑ , t1) = � AnKn+1(r2���⃑ , t2, r1���⃑ , t1)
∞

n=−∞

= � An−1Kn(r2���⃑ , t2, r1���⃑ , t1)
∞

n=−∞

 (3.02) 

The change of variables from n → n  - 1 is allowed because the sum runs from -∞ to ∞. We can see, by comparing 

the original propagator with this one, that a next iteration of A(n) adds only a phase factor of size α. 

 An+1 = exp(iα) An (3.03) 

The choice for A(0) is arbitrary and can be put to 1. This will results in a very simple expression for A(n). 

 An = A0 exp(inα) = exp(inα) (3.04) 

It is, therefore, obvious that the full propagator for a multiply connected space is the sum over all partial propagators 

with an additional phase factor dependent on the homotopy class (Schulman, Techniques And Applications Of Path 

Integration). Likewise, it becomes obvious that the partial propagators are not independent of each other. By looking 

at figure 1 we deduce that: 

 Kn(r2���⃑ , t2, r1���⃑ , t1) = K0(r2���⃑ + 2πnφ� , t2, r1���⃑ , t1) (3.05) 
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Therefore, the traverse of an extra 2π through the covering space adds a phase α to the propagator. The origin and 

interpretation of this α must now be found. In the case of the AB-effect, the magnetic flux provides such an origin as 

will be obvious later, when the full propagator for this system is found. As for the interpretation, the magnetic vector 

potential can be said to directly influence the phase factor, but, as we will see later on, α is also closely connected to 

the self-adjointness of the Hamiltonian. Let us first look at what will happen to the covering space when the solenoid 

is turned on. A magnetic vector potential arises which points only in the φ-direction and has a strength which falls 

off with 1/ρ. This potential, which circles round the solenoid, is the origin of the multivaluedness of the system, as 

depicted by the Riemann surface. In the stretched and flattened version of the covering space, however, the 

description of the magnetic vector potential becomes very simple with all vectors of same magnitude, pointing in the 

same direction. It may be visualised as the slope of a straight, downward sloping hill, i.e. it is the gradient of a 

smooth scalar potential Ω. In the covering space, the complicated magnetic vector potential becomes a simple gauge 

transformation. We will use this very important fact to find the propagator for the AB-effect. 

 

3.3 The Propagator 
 

In this section, we will try to find the propagator for the AB-effect in an intuitive manner by combining the works of 

Schulman and of Gerry and Singh (Schulman, Approximate Topologies; Gerry and Singh). Let us start by 

considering a space described in cylindrical coordinates, with an infinitely long solenoid along the z-axis. The width 

of the solenoid is limited to 0 and, for the time being, the solenoid is turned off. The system is completely 

independent of z and can be reduced to two dimensions. We are, therefore, considering a punctured, multiply 

connected space with an infinitesimally small hole at the origin. The propagator is given by: 

 K(r2���⃑ , t2, r1���⃑ , t1) = �Dr⃑ exp�
i
ħ

S(r2���⃑ , r1���⃑ )� = �Dr⃑ exp�
i
ħ
� dt L�ṙ⃑, r⃑�
t2

t1
� (3.06) 

 where S(r2���⃑ , r1���⃑ ) = � dt L�ṙ⃑, r⃑�
t2

t1
 (3.07) 

The variable of integration Dr denotes that the integral is taken over all possible paths between r(1) and r(2) in the 

time interval t(1) to t(2). The propagator can be rewritten to include an angular component; however, nothing 

changes to the propagator as the integration over the delta-function cancels itself out. We are now considering the 

propagator in the covering space in which the angle φ does not run from -π to π but from -∞ to ∞. The delta function 

selects out those paths which have a specific angle φ. As explained above, every time the φ runs passed π/2 + 2πn, 

i.e. passed the line L in figure 1, it becomes part of a higher homotopy class. The delta function, therefore, can be 

associated with the summing over all different homotopy classes, as will become clearer near the end. 

 K(r2���⃑ , t2, r1���⃑ , t1) = �Dr⃑ exp�
i
ħ
� dt L�ṙ⃑, r⃑�
t2

t1
�� dθ δ�θ −� dt φ̇

t2

t1
�

∞

−∞
 (3.08) 

From Fourier analysis we know that the delta function is the inverse Fourier transform of the number 1, which we 

can, subsequently, use in our propagator. 
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 2πδ(x) = � dλ exp(iλx)
∞

−∞
 (3.09) 

 K(r2���⃑ , t2, r1���⃑ , t1) = �Dr⃑ exp�
i
ħ
� dt L�ṙ⃑, r⃑�
t2

t1
�� dθ 

1
2π

� dλ exp�iλ �θ − � dt φ̇
t2

t1
��

∞

−∞

∞

−∞
 (3.10) 

By rearranging the terms and combining the integral over the Lagrangian with the integral over the angular 

component, we obtain: 

 K(r2���⃑ , t2, r1���⃑ , t1) = � dθ 
1

2π
� dλ exp(iλθ)�Dr⃑ exp�

i
ħ
� dt L�ṙ⃑, r⃑� − λħφ̇
t2

t1
�

∞

−∞

∞

−∞
 (3.11) 

The integrand of the integral over λ, excluding the phase factor in front and defined as K(λ), becomes: 

 Kλ(r2���⃑ , t2, r1���⃑ , t1) = �Dr⃑ exp�
i
ħ
� dt L�ṙ⃑, r⃑� − λħφ̇
t2

t1
� = �Dr⃑ exp�

i
ħ
� dt 

1
2

mṙ⃑2 − λħφ̇
t2

t1
� (3.12) 

 where L�ṙ⃑, r⃑� =
1
2

mṙ⃑2 (3.13) 

The Lagrangian is that for a free particle as we are still looking at a system with the solenoid turned off, i.e. no 

magnetic field or potential. Here, we could have chosen an alternative method of finding the propagator by including 

the magnetic vector potential within the Lagrangian, as was done by Gerry and Singh, however, this method is less 

intuitive than the one we present here. The integrand of the expression above can be discretised in the usual manner. 

 Kλ(r2���⃑ , t2, r1���⃑ , t1) = lim
N→∞

AN ��drȷ��⃑
N−1

j

 exp�
i
ħ
� Sl(r2���⃑ , r1���⃑ )
N

j=1

� (3.14) 

The action is broken into small parts where each step is the area underneath the Lagrangian given by: 

 lim
N→∞

Sl�rȷ��⃑ , rȷ−1�������⃑ � =
m
2ε
�ρj2 + ρj−12� +

m
ε
ρjρj−1 cos�φj − φj−1� − λħ�φj − φj−1� (3.15) 

 where ε = tj − tj−1 (3.16) 

By determining the Taylor expansion of the cosine, it can be shown that: 

 cos�∆φj� − xε∆φj = cos�∆φj + xε� +
1
2

x2ε2 (3.17) 

 where ∆φj = φj − φj−1 (3.18) 

Doubts can be raised on the integrity of this trick as it remains uncertain what the effect would be of higher order 

interactions on the path integral. Ignoring this for the moment, it can be applied to the action to obtain: 

 Sl�rȷ��⃑ , rȷ−1�������⃑ � =
m
2ε
�ρj2 + ρj−12� +

m
ε
ρjρj−1 �cos�∆φj +

ε
mρjρj−1

λħ� +
1
2
�

ε
mρjρj−1

λħ�
2

� (3.19) 

The integrand of K(λ) includes the exponential of the sum over all small partial-actions, which can be rewritten as 

the product of the exponentials of the actions. 

 exp�
i
ħ
� Sl�rȷ��⃑ , rȷ−1�������⃑ �
N

j=1

� = � exp�
i
ħ

Sl�rȷ��⃑ , rȷ−1�������⃑ ��
N

j=1

 (3.20) 

This, in turn, allows us to consider the exponential of the actions without worrying about the summation. 
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 exp�
im
2ħε

�ρj2 + ρj−12� +
im
ħε
ρjρj−1 cos�∆φj +

ε
mρjρj−1

λħ� +
im
2ħε

ρjρj−1 �
ε

mρjρj−1
λħ�

2

� (3.21) 

It can be shown that the exponential of a cosine is equal to a sum over modified Bessel functions. 

 exp(y cos(x)) = � exp(iνx) Iν(y)
∞

ν=−∞

 (3.22) 

The exponential of the actions can, then, be rewritten to obtain: 

 � exp�iν �∆φj +
ε

mρjρj−1
λħ�� Iν �

im
ħε
ρjρj−1�

∞

ν=−∞

exp�
im
2ħε

�ρj2 + ρj−12� + i
εħλ2

2mρjρj−1
� (3.23) 

Rearranging, we arrive at: 

 � exp�iν∆φj� exp�
im
2ħε

�ρj2 + ρj−12�� Iν �
im
ħε
ρjρj−1� exp�iν

ε
mρjρj−1

λħ + i
εħλ2

2mρjρj−1
�

∞

ν=−∞

 (3.24) 

It follows from the asymptotic behaviour of the modified Bessel functions that the following approximation holds 

when the argument of x is small (Inomata and Singh). 

 Iν+y(x)~ �
1

2πx
�
2

exp�x −
1

2x
�(ν + y)2 −

1
4
�� (3.25) 

 for −
1
2
π ≤ arg(x) ≤

1
2
π (3.26) 

The exponential part written after the modified Bessel function can, therefore, be taken in by this function as a shift 

in the argument ν. 

 � exp�iν∆φj� exp�
im
2ħε

�ρj2 + ρj−12�� Iν−λ �
−im
ħε

ρjρj−1�
∞

ν=−∞

 (3.27) 

The part of the propagator we defined K(λ) now becomes: 

 lim
N→∞

AN ��drȷ��⃑
N−1

j

 � � exp�iν∆φj� exp�
im
2ħε

�ρj2 + ρj−12�� Iν−λ �
−im
ħε

ρjρj−1�
∞

ν=−∞

N

j=1

 (3.28) 

We can extract the angular part of this propagator by making use of the orthogonality relations of the Kronecker 

delta function (Inomata and Singh). 

 � dφ exp(i(x − y)φ)
2π

0
= 2πδ(x, y) (3.29) 

 � exp�iν(φ2 − φ1)�
∞

ν=−∞

lim
N→∞

2πN−1AN ��dρj

N−1

j

 � exp�
im
2ħε

�ρj2 + ρj−12�� Iν+λ �
−im
ħε

ρjρj−1�
N

j=1

 (3.30) 

The full propagator can now be written as: 

 K(r2, t2, r1, t1) = � dθ 
1

2π
� dλ exp(iλθ) � exp�iν(φ2 − φ1)�

∞

ν=−∞

Qν+λ

∞

−∞

∞

−∞
 (3.31) 

 where Qν+λ = lim
N→∞

(2π)N−1AN ��dρj

N−1

j

 � exp�
im
2ħε

�ρj2 + ρj−12�� Iν+λ �
−im
ħε

ρjρj−1�
N

j=1

 (3.32) 
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By making the change of variables λ → λ - ν, we obtain: 

 K(r2���⃑ , t2, r1���⃑ , t1) = � dθ 
1

2π
� dλ � exp(iν(φ2 − φ1 − θ) + iλθ)

∞

ν=−∞

Qλ

∞

−∞

∞

−∞
 (3.33) 

We can use the Poisson summation formula to reinstate the delta function (Bernido and Inomata). 

 � exp(iνφ)
∞

ν=−∞

= � 2π δ(φ + 2πn)
∞

n=−∞

 (3.34) 

 K(r2���⃑ , t2, r1���⃑ , t1) = � dθ � dλ � δ(φ2 − φ1 − θ + 2πn) exp(iλθ)
∞

n=−∞

Qλ

∞

−∞

∞

−∞
 (3.35) 

The integral over the delta function can be changed into a discrete sum over n. Here, we identify 2πn as the extra 

angle φ a path would get by winding once more around the punctured origin. The propagator is, therefore, a sum 

over all homotopy classes with winding number n. 

 K(r2���⃑ , t2, r1���⃑ , t1) = � Kn(r2���⃑ , t2, r1���⃑ , t1)
∞

n=−∞

= � � dλ exp�iλ(φ2 − φ1 + 2πn)�Qλ

∞

−∞

∞

n=−∞

 (3.36) 

The discretised integral Q(λ) over all ρ(j) has been evaluated by Peak and Inomata and, after intensive manipulation, 

reads as follows (Peak and Inomata). 

 Qλ =
−im

2πħ(t2 − t1) exp�
im

2ħ(t2 − t1)
(ρ12 + ρ22)� Iλ �

−imρ1ρ2
ħ(t2 − t1)� (3.37) 

 with AN = �
m

2πiħε
�
N

 (3.38) 

We finally find the full expression for the propagator in a potential free environment. 

 
−im

2πħ∆t
exp�

im
2ħ∆t

(ρ12 + ρ22)� � � dλ exp�iλ(φ2 − φ1 + 2πn)� Iλ �
−imρ1ρ2
ħ∆t

�
∞

−∞

∞

n=−∞

 (3.39) 

 where ∆t = t2 − t1 (3.40) 

As was explained above, the addition of a magnetic potential produced by a solenoid is non-trivial in the base space, 

but is a simple gauge transformation is the covering space. The circular vector potential becomes a gradient of a 

scalar function Ω where the difference between the values for this Ω is equal to the line integral over the magnetic 

vector potential A between the two positions (Schulman, Approximate Topologies). 

 K(r2���⃑ , t2, r1���⃑ , t1) → K(r2���⃑ , t2, r1���⃑ , t1) exp�
iq
ħc
�Ω(r2���⃑ ) − Ω(r1���⃑ )�� (3.41) 

When we return to the base space, we see that this scalar potential increases by the magnitude of the circuit integral 

over the magnetic vector potential every 2π, i.e. the difference in Ω over 2π is equal to the magnetic flux of the 

solenoid. 

 Ω(rn+1��������⃑ ) = Ω(rn���⃑ ) + � dl⃑ A��⃑
R

 (3.42) 

The initial value for this scalar potential is arbitrary as it is simply a phase factor in front of the propagator and can, 

therefore, be taken to be 0. 
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 Ω(rn���⃑ ) = Ω(r0���⃑ ) + 2πnA0 = nF (3.43) 

 where Ω(r0���⃑ ) = 0 (3.44) 

 and F = 2πA0 (3.45) 

The propagator, which already was a sum over all homotopy classes, can now be rewritten to include a phase factor 

dependent on the scalar potential and the number of windings of that class. The second term in the exponential 

indicates what fraction of the magnetic vector potential is has passed through before hitting the detector. 

 K(r2���⃑ , t2, r1���⃑ , t1) = � Kn

∞

n=−∞

exp�
iq
ħc

nF +
iq
ħc

 F
(φ2 − φ1)

2π
� (3.46) 

Because at any position on the detector the interference depends only on the relative phase, this second term can be 

removed. We finally see that, as mentioned above, the propagator is a combination of partial propagators with a 

weight equal to a phase factor α, determined by the magnetic flux. 

 K(r2���⃑ , t2, r1���⃑ , t1) = � Kn

∞

n=−∞

exp �
iq
ħc

nF� = � Kn

∞

n=−∞

exp(inα) (3.47) 

Following our discussion of the non-self-adjointness of the Hamiltonian, we can give another interpretation of the 

parameter α. It was argued that there was need for a family of extension of the Hamiltonian by making use of an 

extra piece of information. For every partial propagator, the original Hamiltonian is, therefore, extended using the 

information hidden in the boundary condition, i.e. using the parameter α multiplied by the number of times the paths 

of this propagator loop around the solenoid. The full propagator is, then, the sum over all partial propagators for the 

different homotopy classes with the appropriate phase factor as the extension to the Hamiltonian of that class. 

 

4 The Interference Pattern 
4.1 The Schrodinger Equation Method 
 

The solution to the AB-effect as presented by Aharonov and Bohm themselves causes a shift in the interference 

pattern seen on a detector. This effect can be made obvious by looking at the cross section and scattering amplitude 

of the wave function. The number of particles that scatter from the solenoid into the infinitesimal angle dφ is the 

number of incident particles multiplied by the infinitesimal ratio dσ for that angle. 

 dNs = Ni
d

dφ
σdφ (4.01) 

Here, dσ/dφ is called the differential cross section. By integrating over φ we could obtain the total cross section and 

total number of scattered particles. In order to determine this cross section, we first write the wave function as: 

 ψ = ψi + ψs = exp(−iρ cos(φ) − iαφ) + f(φ)
exp(iρ)

(ρ)
1
2

 (4.02) 

 where f(φ) =
1

(2πi)
1
2

sin(πα)
exp �−iφ2�

cos �φ2�
 (4.03) 
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It is shown in the appendix that there is a simple relation between what is called the scattering amplitude f(φ) and 

the differential cross section dσ/dφ. 

 
d

dφ
σ = |f(φ)|2 (4.04) 

In order to find the expression we are looking for, we simply take the modulus squared of the scattering amplitude. 

 

 
�

1

(2πi)
1
2

sin(πα)
exp �−iφ2�

cos �φ2�
�

2

=
sin2(πα)

2π cos2 �φ2�
 (4.05) 

We see that, indeed, there is a periodic dependence on α and that, due to the square of the sine function, the addition 

of an integer to α gives the same interference pattern. 

 

4.2 The Path Integral Method 
 

The path integral method has produced a propagator for the AB-effect which can be used to determine the full wave 

function for this system. We will try to find an expression for the interference pattern, i.e. the differential cross 

section, using this method and compare it with the previous solution. First, we must find the wave function using the 

propagator, this was done by Sakoda and Omote using the Lippmann–Schwinger equation; we simply state their 

result (Sakoda and Omote). 

 ψ = ψi + ψs = � J|m+α|(kρ) exp �imφ − |m + α|
π
2
�

∞

m=−∞

 (4.06) 

 with ψi = exp(−ikρ cos(φ)) (4.07) 

 and ψs = − exp(−ikρ cos(φ)) + � J|m+α|(kρ) exp �imφ − |m + α|
π
2
�

∞

m=−∞

 (4.08) 

We see that, even though these authors have used a standard plane wave as the incident wave, different from 

Aharonov and Bohm, the final result for the wave function is very similar. However, the scattering part separately is 

distinct and might give a different differential cross section. When observing at ρ → ∞, the scattering wave can be 

written as: 

 

 
ψs = −

1

(2πkρ)
1
2

exp �ikρ − i
π
4
� � (exp(− sign(m + α) iπα) − 1) exp(imφ)

∞

m=−∞

 (4.09) 

When put into the usual form, we see that f(φ) becomes: 

 

 
f(φ) = −

1

(2πk)
1
2
� (exp(− sign(m + α) iπα) − 1) exp(imφ)
∞

m=−∞

 (4.10) 

The trick is now to get rid of the sign(m + α) by writing the scattering amplitude as two sums, where one sum is the 

complex conjugate of the original sum. 

 

 
lim
ε→0

exp(−iαφ)

−(2πk)
1
2
��(exp(−iπα) − 1) exp(imφ − mε)

∞

m=0

+ �(exp(iπα) − 1) exp(−imφ− mε)
∞

m=1

� (4.11) 
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By evaluating the geometric series, we finally obtain the scattering amplitude. 

 

 f(φ) = �
2π
k
�
1
2
�− sign(m + α)

πα
2

(cos(πα) − 1) + i
sin(πα)

π
exp(−iαφ)

exp(−iφ) + 1
� (4.12) 

The differential cross section for any angle φ ≠ 0, with k = 1, becomes: 

 

 

d
dφ

σ =
sin2(πα)

2π cos2 �φ2�
 (4.13) 

We have, therefore, verified that the interference pattern predicted by means of the path integral method is the same 

as the one that was obtained by Aharonov and Bohm who used the method of the Schrodinger equation. 

 

5 Conclusion 
5.1 Discussion 
 

We have looked at the AB-effect and followed the steps to determine the associated wave function using the path 

integral method. Although some aspects of this method raised doubt on its integrity, the final result for the 

interference pattern was shown to be equal to the predicted effect using the method of solving the Schrodinger 

equation. The path integral method allowed for a more intuitive derivation of the AB-effect. Even though there were 

some problems with the definition of the Hamiltonian and subsequently the time evolution of the system, these 

problems were solved in a very natural way by means of summing over all homotopy classes. An interesting 

question that remains is to what extent the higher order homotopy classes add to the full propagator, i.e. do particles 

really loop around a particular point is space multiple times? 

The Hamiltonian for the AB-setup was not self-adjoint due to the fact that the space we were dealing with was 

multiply connected. A family of extensions was found that uniquely defined the dynamics of the system. This was 

done by looking for an extra piece of information. The information resided in the boundary condition and the 

quantity of interest was the magnetic flux F of the solenoid. Using this extra parameter, the wave function could be 

found and the AB-effect could be explained. From this point of view, the precise details of the magnetic vector 

potential A were completely ignored. Aharonov and Bohm themselves suggested that the vector potential directly 

influences the wave function, but the potential is not necessarily needed to do the mathematics of this particular 

problem. 

The insight by Aharonov and Bohm showed an aspect of quantum mechanics that to this day remains controversial 

and is sometimes misunderstood. The seemingly nonlocal interaction of the magnetic flux with the particles is 

surprising and raises questions about the true nature of the electric scalar potential and the magnetic vector potential. 

It would be interesting to find proof of the same effect in the other three fundamental forces of nature. 
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Appendix 
The Magnetic Vector Potential 
 

In this paper, we have used the magnetic vector potential A. Here, we shall derive the expression for A for a long, 

straight, current-carrying conductor or wire. We will then build on this to find the vector potential for a solenoid. In 

each case, an idealisation is used where the wire and the solenoid stretch from minus infinity to plus infinity. 

Furthermore, the radii of the wire and of the solenoid are taken to be infinitesimal, i.e. R is limited to 0 while 

keeping the total flux constant. 

 

Wire 
 

In this section, we will derive the magnetic vector potential for an infinitely long wire. This will be done by 

examining the current flowing through the wire and by determining what kind of magnetic field this produces. 

 
The wire is placed along the z-axis as shown in figure 2. It conducts a charge density ρ(c) with velocity v pointing in 

the positive z-direction. 

 J⃑ = ρcv�⃑ = J0z� (A.01) 

 where J0 = ρcv0 (A.02) 

The current running through the wire is the total current density over the cross section of the wire, which is assumed 

to remain constant even when the limit of R(w) → 0 is taken.  

 I⃑ = πRw
2J⃑ = I0z� (A.03) 

 where I0 = πRw
2J0 (A.04) 

Ampere's circuital law states that the circuit integral of the magnetic field over a loop is proportional to the electric 

flux piercing through the surface enclosed by the loop. In this case, any circular loop with circumference 2πρ, 

enclosing the wire, runs over the angular component of the magnetic field and is proportional to the current running 

through the wire. 
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 �B��⃑ ∙ dl⃑ =
4π
c

I0 (A.05) 

 2πρBφ =
4π
c

I0 (A.06) 

An expression for the angular component of B can, then, easily be found. It follows from the symmetry of this setup 

that the magnetic field is independent of z and of φ; B only has an angular component, which falls off with 1/ρ. 

 Bφ =
2
cρ

I0 = B0
1
ρ

 (A.07) 

 where B0 =
2
c

I0 (A.08) 

 B��⃑ = Bφφ� = B0
1
ρ
φ� (A.09) 

The magnetic potential is defined as that of which the curl is B. Again, the symmetry of the problem helps us to 

determine that A only has a component in the z-direction. 

 B��⃑ = ∇��⃑ × A��⃑ = −
∂
∂ρ

Azφ� (A.10) 

An expression for the z component of A, and then also for the vector potential itself, can be found. A seems to go 

with the log of ρ and points in the negative z-direction, i.e. antiparallel to the current. 

 Az = −B0 log ρ = −A0 log ρ (A.11) 

 where A0 = B0 (A.12) 

 A��⃑ = Azz� = −A0 log ρ z� (A.13) 

 

Solenoid 
 

The setup of the solenoid is quite similar to that of the wire. In this case, the wire is circled round with a radius of 

R(s). This will produce a magnetic field inside the solenoid, pointing in the positive z-direction as shown in figure 3. 

 
Although magnetic field lines always loop back onto themselves, there is no magnetic field outside of the solenoid 

because it is infinitely long, i.e. the total returning magnetic flux outside the solenoid is spread out over an infinitely 
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large surface and the flux at any point outside the solenoid is, therefore, 0. The total current running through the wire 

of the solenoid is still I(0), but now points in the φ-direction. 

 I⃑ = πRw
2J⃑ = I0φ� (A.14) 

 where I0 = πRw
2J0 (A.15) 

Again, Ampere's circuital law can be used to determine the strength of the magnetic field. 

 �B��⃑ ∙ dl⃑ =
4π
c

I0 (A.16) 

A loop can be drawn through the solenoid which encloses n cross sections of the wire and stretches over length l in 

the z-direction through the magnetic field. Because the magnetic field points only in the z-direction, the parts of the 

loop perpendicular to it amount to 0. Furthermore, the magnetic field outside the solenoid is also 0 and the part 

which loops back will feel no magnetic field. 

 Bz =
n
l

 
4π
c

I0 = B0 (A.17) 

 B��⃑ = Bzz� = B0z� (A.18) 

 for ρ ≤ Rs (A.19) 

The vector potential for the solenoid can be found by realising that the magnetic field is the curl of A. The symmetry 

of the problem suggests that A cannot depend on φ or z. 

 B��⃑ = ∇��⃑ × A��⃑ =
1
ρ
∂
∂ρ
�ρAρ�z� (A.20) 

Furthermore, Stokes's theorem relates the surface integral of a curl of some vector field to the circuit integral around 

a loop through the vector field. As such, the curl of the magnetic vector potential A, which is equal to the magnetic 

field B, can be integrated over the surface of the solenoid. This is simply the magnetic flux piercing the surface, and 

is equal to the circuit integral over a loop through A. 

 � �∇��⃑ × A��⃑ �
S

da = � B0
S

da = �A��⃑ ∙ dl⃑ (A.21) 

 πRs
2B0 = F = 2πρAφ (A.22) 

The only component of A that is nonzero is the angular component, which follows from the symmetry of the 

problem. Therefore, an expression for A can easily be obtained. 

 Aφ =
πRs

2B0

2π
 
1
ρ

= A0
1
ρ

 (A.23) 

 where A0 =
1
2

Rs
2B0 (A.24) 

 A��⃑ = Aφφ� = A0
1
ρ
φ� (A.25) 

The magnetic vector potential A for a solenoid circles around the solenoid, pointing in the φ-direction with a 

magnitude which is determined by the magnetic flux within the solenoid. As we already mentioned, there is no 

magnetic field outside of the solenoid in this idealisation, but there is a vector potential which contained information 

about the magnetic field. 
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The Exact Solution 
The Schrodinger Equation 
 

Before we begin to derive the Schrodinger equation for the AB-setup, we must establish some basic relations. 

The Hamiltonian acting on a wave function: 

 Hψ = Eψ (A.26) 

The Hamiltonian: 

 H =
1

2m
(p�⃑  −  

q
c

A��⃑ )2 (A.27) 

The energy: 

 E =
p2

2m
=

ħ2k2

2m
 (A.28) 

 where p = ħk (A.29) 

When we realise, with foresight, that the general form of ψ is a plane wave, we find: 

 ψ = exp(ikx + iωt) (A.30) 

 ∇ψ = ikψ =
i
ħ

pψ (A.31) 

 p = −iħ∇ (A.32) 

Therefore, the Schrodinger equation becomes: 

 1
2m

�−iħ∇��⃑ −  
q
c

A��⃑ �
2

ψ =
ħ2

2m
k2ψ (A.33) 

 �∇��⃑ −  i
q
cħ

A��⃑ �
2

ψ = −k2ψ (A.34) 

 �∇��⃑ 2 −  i
q
cħ
�∇��⃑ ∙ A��⃑ + A��⃑ ∙ ∇��⃑ �  −  

q2

c2ħ2
A��⃑ 2 + k2�ψ = 0 (A.35) 

In this system, the magnetic vector potential, under the correct gauge, is the one obtained for a solenoid. 

 A��⃑ =
A0

ρ
φ� (A.36) 

 ∇��⃑ ∙ A��⃑ =
1
ρ
∂
∂φ

A0

ρ
=

A0

ρ2
∂
∂φ

 (A.37) 

 A��⃑ ∙ ∇��⃑ =
A0

ρ
1
ρ
∂
∂φ

=
A0

ρ2
∂
∂φ

 (A.38) 

When we substitute these relations in, we obtain: 

 �
∂2

∂ρ2
+

1
ρ
∂
∂ρ

+
1
ρ2

∂2

∂φ2
− 2i

q
cħ

A0

ρ2
∂
∂φ

−
q2

c2ħ2
A0

2

ρ2
+ k2�ψ = 0 (A.39) 

 with ∇��⃑ 2=
∂2

∂ρ2
+

1
ρ
∂
∂ρ

+
1
ρ2

∂2

∂φ2
 (A.40) 

We can simplify the Schrodinger equation by substituting in α. 
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 �
∂2

∂ρ2
+

1
ρ
∂
∂ρ

+
1
ρ2

∂2

∂φ2
+ 2i

α
ρ2

∂
∂φ

−
α2

ρ2
+ k2�ψ = 0 (A.41) 

 where α = −
q
cħ

A0 (A.42) 

 �
∂2

∂ρ2
+

1
ρ
∂
∂ρ

+
1
ρ2
�
∂
∂φ

+ iα�
2

+ k2�ψ = 0 (A.43) 

 

The Bessel Functions 
 

The Schrodinger equation for the AB-setup looks very similar to the Bessel equation. 

 x2
∂2

∂x2
Jν + x

∂
∂x

Jν + (x2 − ν2)Jν = 0 (A.44) 

When the following substitution is made, we get one step closer to our Schrodinger equation.  

 ρ2
∂2

∂ρ2
Jν + ρ

∂
∂ρ

Jν + (k2ρ2 − ν2)Jν = 0 (A.45) 

 with x →  ρk (A.46) 

We divide both sides by ρ^2. 

 
∂2

∂ρ2
Jν +

1
ρ
∂
∂ρ

Jν +
1
ρ2

(−ν2)Jν + k2Jν = 0 (A.47) 

We see that we can determine ν for our setup. 

 −ν2 = �
∂
∂φ

+ iα�
2

 (A.48) 

 ν = −i
∂
∂φ

+ α = m + α (A.49) 

 where m = −i
∂
∂φ

 (A.50) 

Therefore, the solutions to the Schrodinger equation for the AB-setup are Bessel functions where the argument ν is 

replaced by m + α.  

 

The Cross Section and Scattering Amplitude 

 

Here, we will derive the expression for the differential cross section dσ/dφ in terms of the scattering amplitude f(φ) 

(Shankar; Le Bellac). We take an arbitrary wave function that is scattered due to some potential at the origin. The 

strength of this scattered wave falls off with the square root of 1/ρ because it spreads as circular waves from the 

origin to infinity in all directions, the square root coming from the fact that we are only dealing with the probability 

amplitude. 

 ψ = ψi + ψs = exp(−iρ cos(φ)) + f(φ)
exp(iρ)

(ρ)
1
2

 (A.51) 
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The number of particles, or better, the probability N(s) that scatters into the infinitesimal angle dφ per unit time is 

the probability current N(i) of the incident wave crossing a unit surface multiplied by the infinitesimal ratio dσ for 

that particular angle. 

 dNs = Ni
d

dφ
σdφ (A.52) 

To find the differential cross section, we need to know the probability that is flowing into dφ relative to the incident 

probability current density. Let us consider the probability current density for the scattering part of the wave 

function first. We know that we can separate the incident part and the scattering part when we observe the wave 

function at an angle φ other than φ = 0, the angle at which the incident wave is propagating. We must also take care 

that we do not include the interference terms. The interference terms between the incident wave and the scattering 

wave disappear when we observe at ρ → ∞. 

 ȷs��⃑ =
ħ

2mi
�ψs

∗∇��⃑ ψs − ψs∇��⃑ ψs
∗� (A.53) 

 with ∇��⃑ =
∂
∂ρ
ρ� +

1
ρ
∂
∂φ

φ� (A.54) 

The second term of the del operator can be neglected for ρ → ∞. 

 
∂
∂ρ

f(φ)
exp(iρ)

(ρ)
1
2

ρ� = f(φ) i
exp(iρ)

(ρ)
1
2

ρ� + O �ρ−
2
3� (A.55) 

Therefore, the current density becomes: 

 ȷs��⃑ =
ħ
m

|f(φ)|2

ρ
ρ� (A.56) 

The probability N(s) that scatters into the infinitesimal angle dφ per unit time is equal to the integral of the current 

density j(s) over the line dl stretched by the angle dφ. At a distance ρ, this line has length ρdφ. 

 Ns = �dφ ρȷs��⃑ ∙ ρ� (A.57) 

 dNs =
ħ
m

|f(φ)|2dφ (A.58) 

From the expression above for the infinitesimal number of particles dN(s) it follows that: 

 
d

dφ
σ = |f(φ)|2 (A.59) 

The calculation of the differential cross section, then, becomes trivial. 

 


